

1

Successful Application of Software Reliability Engineering for the NASA Space Shuttle

Ted Keller and Norman F. Schneidewind, Successful Application of Software Reliability
Engineering for the NASA Space Shuttle, Software Reliability Engineering Case Studies,
International Symposium on Software Reliability Engineering, November 3, Albuquerque, New
Mexico, November 4, 1997, pp. 71-82.

Abstract

The Space Shuttle avionics software represents a successful integration of many of the computer

industry's most advanced software engineering practices and approaches. Beginning in the late
1970's this software development and maintenance project has evolved one of the world's most
mature software processes applying the principles of the highest levels of the Carnegie Mellon
University Software Engineering Institute's Capability Maturity Model, Trusted Software
Methodology, and ISO 9001 Standards. This software process, considered to be a "best practice" by
many software industry organizations includes state-of-the-practice software reliability engineering
methodologies. Life-critical Shuttle avionics software produced by this process is recognized to be
among the highest quality and highest reliability software in operation in the world. This case study
explores the successful use of extremely detailed fault and failure history, throughout the software
life cycle, in the application of software reliability engineering techniques to gain insight into the
flight-worthiness of the software and to suggest "where to look" for remaining defects. The role of
software reliability models and failure prediction techniques is examined and explained to allow the
use of these approaches on other software projects. One of the most important aspects of such an
approach, "how to use and interpret the results" of the application of such techniques is addressed .

Keywords: Verification and validation, software reliability measurement and prediction, safety critical
software, risk analysis.

Space Shuttle Flight Software Application

The Space Shuttle Primary Avionics Software Subsystem (PASS) represents a successful integration of
many of the computer industry's most advanced software engineering practices and approaches. Beginning
in the late 1970's this software development and maintenance project has evolved one of the world's most
mature software processes applying the principles of the highest levels of the Software Engineering Institute's
Capability Maturity Model and ISO 9001 Standards. This software process, considered to be a "best
practice" by many software industry organizations includes state-of-the-practice software reliability
engineering (SRE) methodologies. Life-critical PASS produced by this process is recognized to be among
the highest quality and highest reliability software in operation in the world. Using this application, we show
how SRE can be applied to: interpret software reliability predictions, support verification and validation of
the software, assess the risk of deploying the software, predict the reliability of the software, develop test
strategies to bring the software into conformance with reliability specifications, and make reliability decisions
regarding deployment of the software.

2

Reliability predictions are currently used by Lockheed-Martin Space Information Systems to add
confidence to established positions regarding low failure probabilities for the PASS that are based on formal
software certification processes. It is the purpose of this case study to share the experience obtained from
the use of SRE on this project, since this application is judged by the Lockheed-Martin team to be a
successful attempt to apply SRE to this software. The SRE techniques and concepts employed by
Lockheed-Martin should be of value for other software systems.

Interpretation of Software Reliability Predictions

Successful use of statistical modeling in predicting the reliability of a software system requires a thorough
understanding of precisely how the resulting predictions are to be interpreted and applied [9]. The PASS
(430 KLOC) is frequently modified, at the request of NASA, to add or change capabilities using a
constantly improving process. Each of these successive PASS versions constitutes an upgrade to the
preceding software version. Each new version of the PASS (designated as an Operational Increment, OI)
contains software code which has been carried forward from each of the previous versions ("previous-
version subset") as well as new code generated for that new version ("new-version subset").We have found
that by applying a reliability model independently to the code subsets according to the following rules, we
can obtain satisfactory composite predictions for the total version:

(1) all new code developed for a particular version uses the same development process.

(2) all code introduced for the first time for a particular version is considered to have the same life and

operational execution history

(3) once new code is added to reflect new functionality in the PASS, this code is only changed thereafter to

correct faults.

It is essential to recognize that this approach requires a very accurate code change history so that every
failure can be uniquely attributed to the version in which the defective line(s) of code were first introduced.
In this way it is possible to build a separate failure history for the new code in each release. To apply SRE
to your software system you should consider breaking your systems and processes down into smaller
elements to which a reliability model can be more accurately applied. Using this approach, we have been
successful in applying SRE to predict the reliability of the PASS for NASA.

Estimating Execution Time

We estimate execution time of segments of the PASS software by analyzing records of test cases in
digital simulations of operational flight scenarios as well as records of actual use in Shuttle operations. Test
case executions are only counted as "operational execution time" for previous-version subsets of the version
being tested if the simulation fidelity very closely matches actual operational conditions. Pre-release test
execution time for the new code actually being tested in a version is never counted as operational execution
time. We use the failure history and operational execution time history for the new-code subset of each
version to generate an individual reliability prediction for that new code in each version by separate

3

applications of the reliability model. This approach places every line of code in the total PASS into one of
the subsets of "newly" developed code, whether "new" for the original version or any subsequent version.
We then represent the total reliability of the entire software system as that of a composite system of
separate components ("new-code subsets"), each having an individual execution history and reliability,
connected in series. Lockheed-Martin is currently using this approach to apply the Schneidewind [8,9]
model as a means of predicting a "conservative lower bound" for the PASS reliability.

Interpretations and Credibility

The two most critical factors in establishing credibility in software reliability predictions are the validation
method and the way the predictions are interpreted. For example, a "conservative" prediction can be
interpreted as providing an "additional margin of confidence" in the software reliability, if that predicted
reliability already exceeds an established "acceptable level" or requirement. You may not be able to validate
that you can predict the reliability of your software precisely, but you can demonstrate that with "high
confidence" you can predict a lower bound on the reliability of that software within a specified environment.
If you can use historical failure data at a series of previous dates (and you have the actual data for the failure
history following those dates), you should be able to compare the predictions to the actual reliability and
evaluate the performance of the model(s) used. You should take all these factors into consideration as you
establish validation success criteria. This will also significantly enhance the credibility of your predictions
among those who must make decisions based on your results.

Verification and Validation

Software reliability measurement and prediction are useful approaches to verify and validate software.
Measurement refers to collecting and analyzing data about the observed reliability of software, for example
the occurrence of failures during test. Prediction refers to using a model to forecast future software
reliability, for example failure rate during operation. Measurement also provides the failure data that is used
to estimate the parameters of reliability models (i.e., make the best fit of the model to the observed failure
data). Once the parameters have been estimated, the model is used to predict the future reliability of the
software. Verification ensures that the software product, as it exists in a given project phase, satisfies the
conditions imposed in the preceding phase (e.g., reliability measurements of safety critical software
components obtained during test conform to reliability specifications made during design) [5]. Validation
ensures that the software product, as it exists in a given project phase, which could be the end of the
project, satisfies requirements (e.g., software reliability predictions obtained during test correspond to the
reliability specified in the requirements) [5].

Another way to interpret verification and validation is that it builds confidence that software is ready to
be released for operational use. The release decision is crucial for systems in which software failures could
endanger the safety of the mission and crew (i.e., safety critical software). To assist in making an informed
decision, we integrate software risk analysis and reliability prediction, and we are evaluating stopping rules
for testing. This approach is applicable to all safety critical software. Improvements in the reliability of
software, where the reliability measurements and predictions are directly related to mission and safety,
contribute to system safety.

4

Reliability Measurements and Predictions

There are a number of measurements and predictions that can be made of reliability to verify and
validate the software. Among these are remaining failures, maximum failures, total test time required to
attain a given fraction of remaining failures, and time to next failure. These have been shown to be
useful measurements and predictions for: 1) providing confidence that the software has achieved reliability
goals; 2) rationalizing how long to test a software component (e.g., testing sufficiently long to verify that the
measured reliability conforms to design specifications); and 3) analyzing the risk of not achieving remaining
failure and time to next failure goals [6]. Having predictions of the extent to which the software is not fault
free (remaining failures) and whether a failure it is likely to occur during a mission (time to next failure)
provide criteria for assessing the risk of deploying the software. Furthermore, fraction of remaining
failures can be used as both an operational quality goal in predicting total test time requirements and,
conversely, as an indicator of operational quality as a function of total test time expended [6].

The various software reliability measurements and predictions can be divided into the following two
categories to use in combination to assist in assuring the desired level of reliability of the software in safety
critical systems like the PASS. The two categories are: 1) measurements and predictions that are associated
with residual software faults and failures, and 2) measurements and predictions that are associated with the
ability of the software to complete a mission without experiencing a failure of a specified severity. In the first
category are: remaining failures, maximum failures, fraction of remaining failures, and total test time
required to attain a given number or fraction of remaining failures. In the second category are: time to
next failure and total test time required to attain a given time to next failure. In addition, there is the
risk associated with not attaining the required remaining failures and time to next failure. Lastly, there is
operational quality that is derived from fraction of remaining failures. With this type of information a
software manager can determine whether more testing is warranted or whether the software is sufficiently
tested to allow its release or unrestricted use. These predictions provide a quantitative basis for achieving
reliability goals [2].

Risk Assessment

 Safety Risk pertains to executing the software of a safety critical system where there is the chance of
injury (e.g., astronaut injury or fatality), damage (e.g., destruction of the Shuttle), or loss (e.g., loss of the
mission) if a serious software failure occurs during a mission. In the case of the Shuttle PASS, where the
occurrence of even trivial failures is extremely rare, the fraction of those failures that pose any safety or
mission success impact is too small to be statistically significant. As a result, for this approach to be feasible,
all failures (of any severity) over the entire 20-year life of the project have been included in the failure history
database for this analysis. Therefore, the risk criterion metrics to be discussed for the Shuttle quantify the
degree of risk associated with the occurrence of any software failure, no matter how insignificant it may be.
The approach used can be applied to Safety Risk where sufficient data exist.

We are experimenting with an algorithm, which uses of the Schneidewind Software Reliability Model

to compute a parameter: fraction of remaining failures as a function of the archived failure history during
test and operation [6]. The prediction methodology uses this parameter and other reliability quantities to
provide bounds on total test time, remaining failures, operational quality, and time to next failure that
are necessary to meet arbitrarily defined Shuttle software reliability levels. The total test time versus
fraction of remaining failures curve shows a pronounced asymptotic characteristic that indicates the
possibility of big gains in reliability as testing continues; eventually the gains become marginal as testing
continues.

 Two criteria for software reliability levels will be defined. Then these criteria will be applied to the risk
analysis of safety critical software, using the PASS as an example. In the case of the Shuttle example, the
"risk" will represent the degree to which the occurrence of failures does not meet required reliability levels,
regardless of how insignificant the failures may be. Next, a variety of prediction equations that are used in
reliability prediction and risk analysis will be defined and derived; included is the relationship between time
to next failure and reduction in remaining failures. Then it is shown how the prediction equations can be
used to integrate testing with reliability and quality. An example is shown of how the risk analysis and
reliability predictions can be used to make decisions about whether the software is ready to deploy; this
approach could be used to determine whether a software system is safe to deploy.

 Criteria for Reliability

If the reliability goal is the reduction of failures of a specified severity to an acceptable level of risk [7],
then for software to be ready to deploy, after having been tested for total time tt, it must satisfy the following
criteria:

1) predicted remaining failures r(tt)<rc, (1)
where rc is a specified critical value , and

2) predicted time to next failure TF(tt)>tm, (2)
where tm is mission duration. The total time tt could represent a Safe/Unsafe criterion, or the time to remove
all faults regardless of severity (as used in the Shuttle example).

For systems that are tested and operated continuously like the Shuttle, tt, TF(tt), and tm are measured in
execution time. Note that, as with any methodology for assuring software reliability, there is no guarantee
that the expected level will be achieved. Rather, with these criteria, the objective is to reduce the risk of
deploying the software to a "desired" level.

Remaining Failures Criterion

Using the assumption that the faults that cause failures are removed (this is the case for the Shuttle),
criterion 1 specifies that the residual failures and faults must be reduced to a level where the risk of
operating the software is acceptable. As a practical matter, rc=1 is suggested. That is, the goal is to reduce
the expected remaining failures of a specified severity to less than one before deploying the software. The
assumption for this choice is that one or more remaining failures would constitute an undesirable risk of
failures of the specified severity. Thus, one way to specify rc is by failure severity level (e.g., include) only life
threatening failures). Another way, which imposes a more demanding criterion, is to specify that rc
represents all severity level, as in the Shuttle example. For example, r(tt)<1 would mean that r(tt) must be
less than one failure, independent of severity level.

If r(tt)≥rc is predicted, testing would continue for a total time tt'>tt that is predicted to achieve r(tt')<rc,
using the assumption that more failures will be experienced and more faults will be corrected so that the
remaining failures will be reduced by the quantity r(tt)-r(tt'). If the developer does not have the resources
to satisfy the criterion or is unable to satisfy the criterion through additional testing, the risk of deploying the
software prematurely should be assessed (see the next section). It is known that it is impossible to
demonstrate the absence of faults [3]; however, the risk of failures occurring can be reduced to an
acceptable level, as represented by rc. This scenario is shown in Figure 1. In case A r(tt)<rc is predicted and
the mission begins at tt. In case B r(tt)≥rc is predicted and the mission would be postponed until the software
is tested for total time tt' when r(tt')<rc is predicted. In both cases, criterion 2) would also be required for
the mission to begin.

Time to Next Failure Criterion

Criterion 2 specifies that the software must survive for a time greater than the duration of the mission. If
 TF(tt)≤tm, is predicted, the software is tested for a total time tt''>tt that is predicted to achieve TF(tt")>tm,
using the assumption that more failures will be experienced and faults corrected so that the time to next
failure will be increased by the quantity TF(tt")-TF(tt). Again, if it is infeasible for the developer to satisfy the
criterion for lack of resources or failure to achieve test objectives, the risk of deploying the software
prematurely should be assessed (see the next section). This scenario is shown in Figure 2. In case A
TF(tt)>tm is predicted and the mission begins at tt. In case B TF(tt)≤tm is predicted and in this case the
mission would be postponed until the software is tested for total time tt'' when TF(tt")>tm is predicted. In
both cases criterion 1) would also be required for the mission to begin. If neither criterion is satisfied, the
software is tested for a time which is the greater of tt' or tt''.

Total Test Time

The amount of total test time tt can be considered a measure of the degree to which software
reliability goals have been achieved. This is particularly the case for systems like the Shuttle where the
software is subjected to continuous and rigorous testing for several years in multiple facilities, using a variety
of operational and training scenarios (e.g., by Lockheed-Martin in Houston, by NASA in Houston for
astronaut training, and by NASA at Cape Canaveral). We can view tt as an input to a risk reduction

process, and r(tt) and TF(tt) as the outputs, with rc and tm as "risk criteria levels" of reliability that control the
process. While it must be recognized that total test time is not the only consideration in developing test
strategies and that there are other important factors, like the consequences for reliability and cost, in
selecting test cases [11] nevertheless, for the foregoing reasons, total test time has been found to be
strongly positively correlated with reliability growth for the Shuttle [9].

Remaining Failures

The mean value of the risk criterion metric (RCM) for criterion 1 is formulated as follows:
RCM r(tt)= (r(tt)-rc)/rc=(r(tt)/rc)-1 (3)

Equation (3) is plotted in Figure 3 as a function of tt for rc=1, where positive, zero, and negative values
correspond to r(tt)>rc, r(tt)=rc, and r(tt)<rc, respectively. In Figure 3, these values correspond to the
following regions: CRITICAL (i.e., above the X-axis predicted remaining failures are greater than the
specified value); NEUTRAL (i.e., on the X-axis predicted remaining failures are equal to the specified
value); and DESIRED (i.e., below the X-axis predicted remaining failures are less than the specified
value, which could represent a "safe" threshold or in the Shuttle example, an "error-free" condition
boundary). This graph is for the Shuttle Operational Increment OID (with many years of shelf life): a
software system comprised of modules and configured from a series of builds to meet Shuttle mission
functional requirements. In this example, it can be seen that at approximately tt=57 the risk transitions from
the CRITICAL region to the DESIRED region.

Time to Next Failure

Similarly, the mean value of the risk criterion metric (RCM) for criterion 2 is formulated as follows:

RCM TF(tt)=(tm-TF(tt))/tm=1-(TF(tt))/tm (4)

Equation (4) is plotted in Figure 4 as a function of tt for tm=8 days (a typical mission duration time for this
OI), where positive, zero, and negative risk corresponds to TF(tt)<tm, TF(tt)=tm, and TF(tt)>tm,
respectively. In Figure 4, these values correspond to the following regions: CRITICAL (i.e., above the X-
axis predicted time to next failure is less than the specified value); NEUTRAL (i.e., on the X-axis
predicted time to next failure is equal to the specified value); and DESIRED (i.e., below the X-axis
predicted time to next failure is greater than the specified value). This graph is for the Shuttle operational
increment OIC. In this example the RCM is in the DESIRED region at all values of tt.

Approach to Prediction

In order to support the reliability goal and to assess the risk of deploying the software, various reliability

and quality predictions are made during the test phase to validate that the software meets requirements. For
example, suppose the software reliability requirements state the following: 1) ideally, after testing the
software for total test time tt, the predicted remaining failures shall be less than one; 2) if the ideal of 1)
cannot be achieved due to cost and schedule constraints, time to next failure, predicted after testing for

total test time tt, shall exceed the mission duration; and 3) the risk of not meeting 1) and 2) shall be
assessed. Thus, this approach uses a software reliability model to predict the following: 1) maximum
failures, remaining failures, and operational quality (as defined in the next section); 2) time to next
failure (beyond the last observed failure); 3) total test time necessary to achieve required levels of
remaining failures (fault) level, operational quality, and time to next failure; and 4) tradeoffs between
increases in levels of reliability and quality with increases in testing (i.e., cost of testing).

An important concept to note is that reliability will be measured during test; that is, failure data will be
collected for two purposes: 1) to verify that the observed data conform to the reliability specified during
design and 2) to provide data for reliability parameter estimation. With regard to 1), the observed time to
next failure can be compared to the specified quantity. However, in contrast, observed remaining failures
and maximum failures have no meaning because we don't know how many remaining failures (faults)
there are at a given time during the life of the software and we don't know the maximum failures that will
have occurred at the end of the life of the software. Thus remaining failures and maximum failures only
have meaning as predicted quantities. However, we can make approximations to these quantities for model
validation purposes (see the Summary of Predictions section).

Prediction Equations

In order to consider the risk of deploying the PASS, various predictions have been made based on the

Schneidewind Software Reliability Model [1, 8, 9, 10], one of the four models recommended in the
ANSI/AIAA Recommended Practice for Software Reliability [1]. The equations are derived in the next
section. They have been applied to analyze the reliability of the PASS based on the approach
recommended herein. The Statistical Modeling and Estimation of Reliability Functions for Software
(SMERFS) [4] is used for all predictions except tt, which is not implemented in SMERFS.

Because the PASS is run continuously, around the clock, in simulation, test, or flight, "time" refers to
continuous execution time and total test time refers to execution time that is used for testing. Failure count
intervals are equal length periods of continuous execution time.

 In the following equations, parameter a is the failure rate at the beginning of interval s; parameter ß is
the negative of the derivative of failure rate divided by failure rate (i.e., relative failure rate); t is the last
interval of observed failure data; s is the starting interval for using observed failure data in parameter
estimation that provides the best estimates of a and ß and the most accurate predictions [8]; Xs-1 is the
observed failure count in the range [1,s-1]; Xs,t is the observed failure count in the range [s,t]; and
Xt=Xs-1+Xs,t. Failures are counted against operational increments (OIs). Data from four Shuttle OI's,
designated OIA, OIB, OIC, and OID are used in this analysis example.

 Cumulative Failures

When estimates are obtained for the parameters a and ß, with s as the starting interval for using
observed failure data, the predicted failure count in the range [s,t] is obtained:

Fs,t=(a/ß)[1-exp(-ß((t-s+1)))] (5)

Furthermore, if Xs-1, the observed failure count in the range [1,s-1], is added to equation (5), the predicted
failure count in the range [1, t] is obtained:

F(t)=(a/ß)[1-exp(-ß((t-s+1)))]+Xs-1 (6)

Failures in an Interval Range

Let t=t2 and subtract Xt1=Xs-1+Xs,t1, the observed failure count in the range [1,t1], from equation (6),
then obtain the predicted failure count in the range [t1,t2]:

F(t1,t2)=(a/ß)[1-exp(-ß((t2-s+1)))]-Xs,t1 (7)

 Maximum Failures

Let t=∞ in equation (6) and obtain the predicted failure count in the range [1,∞] (i.e., maximum
failures over the life of the software):

F(∞)=a/ß+Xs-1 (8)

Remaining Failures

To obtain predicted remaining failures r(t) at time t, subtract Xt=Xs-1+Xs,t from equation (8):

r(t)=(a/ß)-Xs,t=F(∞)-Xt (9)

r(t) can also be expressed as a function of total test time tt by substituting equation (5) for Xs,t in
equation (9) and letting t=tt:

r(tt)=(a/ß)(exp-ß[tt-(s-1)]) (10)

Fraction of Remaining Failures

If equation (9) is divided by equation (8), fraction of remaining failures, predicted at time t is
obtained:

p(t)=r(t)/F(∞) (11)

Operational Quality

The operational quality of software is the complement of p(t). It is the degree to which software is free
of remaining faults (failures), using the assumption that the faults that cause failures are removed. It is

predicted at time t as follows:

Q(t)=1-p(t) (12)

Total Test Time to Achieve Specified Remaining Failures

The predicted total test time required to achieve a specified number of remaining failures at tt, r(tt),

is obtained from equation (10) by solving for tt:

Time to Next Failure

By substituting t2=t+TF(t) in equation (7), letting t1=t, defining Ft=F(t,t+TF),and solving for TF(t), the

predicted time for the next Ft failures to occur, when the current time is t, is obtained :

The terms in TF(t) have the following definitions:

t: Current interval;
Xs,t: Observed failure count in the range [s,t]; and
Ft: Given number of failures to occur after interval t.

Equations (5)-(11) and (14) are predictors of reliability that can be related to safety or, as in the Shuttle
example, the error-free condition of the software; equation (13) represents the predicted total test time
required to achieve stated reliability goals. If a quality requirement is stated in terms of fraction of
remaining failures, the definition of Q as Operational Quality, equation (12), is the degree to which the
software meets specified requirements [7]. For example, if a reliability specification requires that software is
to have no more that 5% remaining failures (i.e., p=.05, Q=.95) after testing for a total of tt intervals, then a
predicted Q of .90 would indicate the degree to which the software meets the requirement.

Relating Testing to Reliability and Quality

Predicting Total Test Time and Remaining Failures

The tradeoff between testing and reliability can be analyzed by first using equation (8) to predict
maximum failures (F(∞)=11.76 for Shuttle OIA). Then, using given values of p and equation (11) and

=[log[/([r()])]]/ +(s 1)t tt tα β β − (13)

(t)=[(log[/((+)])/] (t s+1)T X FF s,t t

for (/) > (+)X Fs,t t

α α β β

α β

− − −

 (14)

letting t=tt, r(tt) is predicted for each value of p. The values of r(tt) are the predictions of remaining failures
after the OI has been executed for total test time tt. Next, the values of r(tt) and equation (13) are used to
predict corresponding values of tt. The results are shown in Figure 5, where r(tt) and tt are plotted against p
for OIA. Note that required total test time tt rises very rapidly at small values of p and r(tt). Also note that
the maximum value of p on the plot corresponds to tt=18 and that smaller values correspond to future
values of tt (i.e., tt>18).

Predicting Operational Quality

Similarly, the tradeoff between testing and quality can be analyzed by using equation (12), which is a
useful measure of the operational quality of software because it measures the degree to which faults have
been removed from the software (using the assumption that the faults that cause failures are removed),
relative to predicted maximum failures. This type of quality is called operational (i.e., based on executing
the software) to distinguish it from static quality (e.g., based on the complexity of the software). Using given
values of p and equations (11) and (12) and letting t=tt, r(tt) and Q are computed, respectively. The values
of r(tt) are then used in equation (13) to compute tt. Like equation (12), equation (13) has the asymptotic
property of a great amount of testing required to achieve high levels of quality.

Making Reliability Decisions

In making the decision about how long to test, tt, the reliability criteria and risk assessment approach

can be applied. Table 1 is used to illustrate the process. For tt=18 (when the last failure occurred on OIA),
rc=1, and tm=8 days (.267 intervals), remaining failures, RCM for remaining failures, time to next
failure, RCM for time to next failure, and operational quality are shown. These results indicate that
criterion 2 is satisfied but not criterion 1 (i.e., CRITICAL with respect to remaining failures); also
operational quality is low.

By looking at Table 1, it can be seen that if remaining failures r(18) are reduced by 1 from 4.76 to
3.76 (non-integer values are possible because the predictions are mean values), the predicted time to next
failure that would be achieved is TF(18)=3.87 intervals. These predictions satisfy criterion 2 (i.e.,
TF(18)=3.87>tm=.267) but not criterion 1 (i.e., r(18)=4.76>rc=1). Note also in Table 1 that fraction of
remaining failures p=1-Q=.40 at r(18)=4.76. Now, if testing is continued for a total time tt=52 intervals,
as shown in Table 1, and remaining failures are reduced from 4.76 to .60, the predicted time to next
4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This corresponds to tt=18+34=52
intervals. That is, if testing is continued for an additional 34 intervals, starting at interval 18, another 4.16
failures would be expected. These predictions now satisfy criterion 1 because r(52)=.60<rc=1. Note also
in Table 1 that fraction of remaining failures p=1-Q=.05 at r(52)=.60. Using the converse of the
relationship, provides another perspective, where, if testing is continued for an additional TF=34 intervals,
starting at interval 18, the predicted reduction in remaining failures that would be achieved is 4.16 or r
(52)=. 60.

Lastly, Figure 6 shows the Deployment Decision, relevant to the Shuttle (which could be the Launch

Decision relative to the Shuttle), where remaining failures are plotted against total test time for OIA.

With these results in hand, the software manager can decide whether to deploy the software based on
factors such as predicted remaining failures, as shown in Figure 6, along with considering other factors
such as the trend in reported faults over time, inspection results, etc.. If testing were to continue until tt=52,
the predictions in Figure 6 and Table 1 would be obtained. These results show that criterion 1 is now
satisfied (i.e., DESIRED) and operational quality is high. Figure 6 also shows that at tt=52, further
increases would not result in a significant increase in reliability. Also note that at tt=52 it is not feasible to
make a prediction of TF(52) because the predicted remaining failures is less than one.

Table 1. Reliability Criteria Assessment of OIA

rc=1

tm=8
days

tt

a

ß

s*

r(tt)

RCM
r(tt)

s*

TF(tt)

RCM
TF(tt)

Q

18

.534

.061

9

4.76

3.76

9

3.87

-13.49

.60

52

.534

.061

9

.60

-.40

9

*

*

.95

* Cannot predict because predicted Remaining Failures is less than one.

Summary of Predictions

Table 2 shows a summary of remaining and maximum failure predictions compared with actual failure
data, where available, for OIA, OIB, OIC, and OID. The purpose of this analysis is to validate the model for
Shuttle applications. Because actual remaining and maximum failures are unknown, the assumption is used:
that remaining failures are "zero" for those OI's (B, C, and D) that were executed for extremely long times
(years) with no additional failure reports; correspondingly, for these OI's, the assumption is used that
maximum failures equals total observed failures.

Table 2. Predicted Remaining and Maximum Failures versus Actuals

tt

s*

a

ß

r(tt)

Actual r

F(∞)

Actual F

OIA

18

9

.534

.061

4.76

?A

11.76

7A

OIB

20

1

1.69

.131

0.95

1B

12.95

13B

OIC

20

7

1.37

.126

1.87

2C

12.87

13C

OID

18

6

.738

.051

7.36

4D

17.36

14D

Time of last recorded failure :
A. No additional failures have been reported after 17.17 intervals for OIA.
B. The last recorded failure occurred at 63.67 intervals for OIB.
C. The last recorded failure occurred at 43.80 intervals for OIC.
D. The last recorded failure occurred at 65.03 intervals for OID.

Table 3 shows a summary of total test time and time to next failure predictions compared with actual

execution time data, where available, for OIA, OIB, OIC, and OID.

Table 3. Predicted Total Test Time and Time to Next Failure versus Actuals

s*

tt(r=1)

Actual tt

t

s*

TF(t)

Actual TF

OIA

9

43.59

?

18

9

3.9

?

OIB

1

*

63.67

20

0

*

43.67

OIC

7

24.98

27.07

20

5

4.2

7.63

OID

6

56.84

58.27

18

5

6.4

6.20

* Cannot predict because predicted Remaining Failures is less than one.
Additional Predictions for OID:
The following are additional predictions of total test time for OID that are not listed in
Table 3: tt(r=2)=43.35, Actual=45.17; tt(r=3)=35.47, Actual=23.70.

Lessons Learned

Several important lessons have been learned from our experience of twenty years in developing and
maintaining the PASS, which you could consider for adoption in your SRE process:

1) No one SRE process method is the "silver bullet" for achieving high reliability. Various methods, including
formal inspections, failure modes analysis, verification and validation, testing, statistical process management,
risk analysis, and reliability modeling and prediction must be integrated and applied.

2) The process must be continually improved and upgraded. For example, recent experiments with software
metrics have demonstrated the potential of using metrics as early indicators of future reliability problems.
This approach, combined with inspections, allows many reliability problems to be identified and resolved
prior to testing.

3) The process must have feedback loops so that information about reliability problems discovered during
inspection and testing is fed back not only to requirements analysis and design for the purpose of improving
the reliability of future products but also to the requirements analysis, design, inspection and testing
processes themselves. In other words the feedback is designed to improve not only the product but also the
processes that produce the product.

4) Given the current state-of-the-practice in software reliability modeling and prediction, practitioners should
not view reliability models as having the ability to make highly accurate predictions of future software
reliability. Rather, software managers should interpret these predictions in two significant ways: a) providing
increased confidence, when used as part of an integrated SRE process, that the software is safe to deploy;
and 2) providing bounds on the reliability of the deployed software (e.g., high confidence that in operation
the time to next failure will exceed the predicted value and the predicted value will safely exceed the mission
duration).

References

[1] Recommended Practice for Software Reliability, R-013-1992, American National Standards

Institute/American Institute of Aeronautics and Astronautics, 370 L'Enfant Promenade, SW, Washington,
DC 20024, 1993.

[2] C. Billings, et al, "Journey to a Mature Software Process", IBM Systems Journal, Vol. 33, No. 1, 1994, pp.

46-61.

[3] E. W. Dijkstra, "Structured Programming", Software Engineering Techniques, eds. J. N. Buxton and B.

Randell, NATO Scientific Affairs Division, Brussels 39, Belgium, April 1970 pp. 84-88.

[4] William H. Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliability Functions for

Software (SMERFS) Users Guide, NAVSWC TR-84-373, Revision 3, Naval Surface Weapons Center,
Revised September 1993.

[5] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12.1990, The Institute of

Electrical and Electronics Engineers, New York, New York, March 30, 1990.

[6] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing Confidence in the

Reliability of the Space Shuttle Flight Software", Proceedings of the AIAA Computing in Aerospace 10,
San Antonio, TX, March 28, 1995, pp. 1-8.

[7] Norman F. Schneidewind, "Reliability Modeling for Safety Critical Software", IEEE Transactions on

Reliability, Vol. 46, No.1, March 1997, pp.88-98.

[8] Norman F. Schneidewind, "Software Reliability Model with Optimal Selection of Failure Data", IEEE

Transactions on Software Engineering, Vol. 19, No. 11, November 1993, pp. 1095-1104.

[9] Norman F. Schneidewind and T. W. Keller, "Application of Reliability Models to the Space Shuttle", IEEE

Software, Vol. 9, No. 4, July 1992 pp. 28-33.

[10] Norman F. Schneidewind, "Analysis of Error Processes in Computer Software", Proceedings of the

International Conference on Reliable Software, IEEE Computer Society, 21-23 April 1975, pp. 337-346.

[11] Elaine J. Weyuker, "Using the Consequences of Failures for Testing and Reliability Assessment",
 Proceedings of the Third ACM SIGSOFT Symposium on the Foundations of Software
 Engineering, Washington, D.C., October 10-13, 1995, pp. 81-91.

Start Test End Test, Begin Mission End Mission

tt
r(tt)<rc

Start Test Continue Test Begin Mission End Mission

B.

A.

End Test

tt tt'
r(tt)$rc r(tt)<rc

Figure 1. Remaining Failures Criterion Scenario

Start Test End Test, Begin Mission End Mission

tt

Start Test Continue Test Begin Mission End Mission

B.

A.

End Test

tt tt
’’

Figure 2. Time to Next Failure Criterion Scenario

tm

TF(tt)

TF(tt) TF(t t ’’)
tm

18 33.5 49 64.5 80

Total Test Time (30 Day Intervals)

-0.7

1.3

3.3

5.3

7.3

CRITICAL

r(tt)<rc

r(tt)>rc r(tt)=rc

Figure 3. RCM for Remaining Failures, (rc=1), OID

DESIRED

20 24 28 32 36 40 44

Total Test Time (30 Day Intervals)

-73

-53

-33

-13

7 CRITICAL TF(t t)<tm

DESIRED TF(t t)>tm

tm=8 days

TF(t t)=tm

Figure 4. R C M for Time to Next Failure (tmm=8 days), OIC

0 0.1 0.2 0.3 0.4 0.5

Fraction Remaining Failures (p)

0

40

80

120

160

Figure 5. Total Test Time and Remaining Failures

vs. Fraction Remaining Failures, OIA

0

1

2

3

4

5

 r(tt)

tt

0 120 160

Total Test Time (30 Day Intervals)

0

1

2

3

4

5

/ (r=.6, tt=52)

Example:

tt=Total Test Time Until Launch

40 8040

r=Remaining Failures

Figure 8. Launch Decision: Remaining
Failures vs. Total Test Time, OIA

